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Computational techniques for grain-orientation 
determinations using surface traces of crystal 
planes of any indices 
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Department of Mechanical and Production Engineering, National University of Singapore, 
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An analysis is given which permits a computer program to be written for the determination of 
the orientation of a grain of cubic lattice from measured directions on its surface of traces of 
crystallographic planes of any known indices. An application of the analysis to grain orien- 
tation with {1 1 2} traces is given as an illustration, showing how such complex determinations 
are made feasible and easy with computers. 

1. Introduct ion 
During a metallographic examination, traces of crys- 
tallographic planes such as slip lines, Widmanstatten 
precipitates, edges of etch pits, and twin boundaries 
are commonly seen. Fig. 1 shows {1 1 2} deformation 
twins in a ferrite grain in a mild steel specimen aligned 
along the six different directions shown in Fig. 2. 
Traces such as these provide a ready and convenient 
means of obtaining the orientation of grains as an 
alternative to more elaborate and costly techniques 
such as X-ray and electron diffraction. The orien- 
tation determination is taken here to mean the identi- 
fication of the crystallographic plane constituting the 
surface of the grain under observation. Using these 
trace directions, it is possible to deduce the orientation 
of even small grains in polycrystalline specimens, as 
well as grains of phases which have completely trans- 
formed, e.g. austenite in steels. 

The determination of grain orientations from crys- 
tallographic trace directions can be done by Wulff net 
manipulations [1], but this is tedious and impractical 
if the traces are of planes of relatively high order 
indices and, therefore, of high multiplicity, because 
many poles will have to be rotated into position. 
Charts and tables have been produced for specific 
trace types, namely {1 00}, {1 1 1}, and {1 1 0} [2-5] 
for cubic lattices. These are necessarily limited to 
considerations of three or four trace directions at a 
time. The task of producing charts or tables for traces 
of planes of higher indices seems formidable because 
of the many combinations of variants which could 
produce a set of three or four observed trace direc- 
tions. For example, for the {1 1 0} case, three charts 
have to be used in combination [5]. The use of Wulff 
net, tables, or charts is subject to inaccuracies because 
of errors in manipulation in the case of the Wulff net, 
and because of the degree of divisioning employed in 
the tables or charts. 

Analytical expressions and equations have also 
been derived for the determination of grain orien- 
tations from surface crystallographic traces. These are 
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simple for {1 0 0} traces on grains of cubic lattice [2], 
but complex for {1 1 1} traces [6, 7]. However, much 
simpler expressions have been established recently, 
not only for {1 1 1} traces [8], but also for {1 1 0} traces 
[9]. These analytical expressions and equations enable 
the grain orientation to be ascertained as accurately 
as the trace data will permit, without introduction of 
further errors. The principal advantage is, however, 
that they enable the grain-orientation determination 
process to be easily computerized, thus allowing for 
rapid, convenient, and accurate orientation deter- 
minations, and if required, for other computations to 
be performed at the same time, such as obtaining the 
orientation of other crystallographic planes or direc- 
tions relative to the grain surface. 

At present, analytical expressions and equations 
have not been established for higher order index 
planes in cubic systems than those mentioned above, 
such as { 1 1 2} planes, or for the more complex situ- 
ation of mixed crystallographic traces, e.g. a com- 
bined observation of {111} and {110} traces. The 
purpose of this paper is, therefore, to develop analyti- 
cal expressions and equations which will allow grain- 
orientation determinations for cubic lattices for the 
general case, where the traces on a grain surface are of 
planes of any known type. With such expressions and 
equations, one should be able to write a computer 
program to deal with trace observations of planes of 
any type and combination, and thus render feasible 
orientation determinations which were hitherto not 
possible because of their complexity. 

2. Derivat ion of equations for grain 
or ientat ion 

Consider three traces BC, CA, and AB on a grain 
surface ABC at angles of e,/~, and 7 to each other as 
shown in Fig. 3. Suppose they are produced by planes 
(ht k l l l ) ,  (h2k212), and (h3k313) , respectively. These 
planes may be imagined to form a pyramid ABCP as 
shown, with apex angles ~i, ~2, and ~3, whose values 
are readily derived from the indices of the planes BCP, 
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Figure 1 Deformation twins in ferrite in a mild steel specimen. 

CAP, and ABP. Four sets of values of 01, 02, and 03 
are possible because the planes (hi klll), (h2 k2/2), and 
( h s k s l 3 )  can produce four pyramidal shapes. Given 
one pyramidal shape as in Fig. 3, a second pyramidal 
shape will have edges AP, BP, and CP reversed (i.e. 
C'P), with apex angles (re - 01), (re - 02), and 03. A 
third pyramidal shape results if the edge AP is reversed 
instead, the apex angles being now 01, (zt - 02), and 
(rr - 03). Had the edge BP been reversed, instead, the 
fourth pyramidal shape with apex angles (n - 0~), 02 
and (re - 03), would have been formed. We note that, 
excluding the case of any apex angle being ~/2, the 
sign of the product of the cosines of the three apex 
angles is the same for all these four possibilities, i.e. 
the sign is unique for a set of planes (hi klll), (h2 k2/2), 
and (h3k313) producing traces AB, BC, and CA. 

The orientation of the grain can be deduced, once 
the relative lengths of the edges AP, BP, and CP have 
been obtained, as these control the inclination of the 
pyramidal faces to the grain surface plane ABC. For  
simplicity, CP shall be taken of unit length, whilst AP, 
BP, BC, CA, and AB shall be taken to have lengths ko, 
t o, a, b and c respectively. 

C' 

Figure 2 Stereographic plot showing the dispositions of the six 
{ 1 1 2} twin boundary trace directions in the ferrite grain in Fig. 1. 
The small circles denote the locations of the {1 1 2} poles of the twin 
boundary planes rotated 90 ° about  the vertical axis. The { 1 1 2} pole 
positions were computed using the analysis of this paper. 

2364 

' P "  -(~s 

C ' X  

Figure 3 Surface traces AB, BC, and CA produced by planes ABP, 
BCP, and CAP, respectively, which form a pyramid ABCP. 

Applying the cosine rule to Fig. 3, 

a 2 = t~ - -  2 t o j l q  + 1 (1) 

b 2 = k ~ -  2koJ2cz + 1 (2) 

c 2 = k~ - 2kotoJ3c3 + t~ (3) 

where, for m = 1, 2, and 3, 

Crn = [ cOS 0m[ (4)  

Jm = 1 or - 1 (5) 

according to whether 0m is ~< ZC/2 or > ~/2, respectively. 
Let 

k = j2ko  (6a) 

t = jlt0 (6b) 

Then, Equations 1 to 3 may be written 

a 2 = t 2 -  2 q t  + 1 (7) 

b 2 = k 2 -  2 c 2 k  + 1 (8) 

c 2 = Ic 2 - 2 c 4 k t  + t 2 (9) 

where 

C 4 = j l j 2 J 3 c 3  (10)  

We note t h a t j l j 2 j 3  is a known quantity, being equal 
to 1 or - 1 ,  giving, in fact, the sign of the product 
of the cosines of the apex angles of  the pyramid in 
Fig. 3. (If at least one apex angle is ~/2, we shall 
choose it to  be 03, so that c 4 = C 3 = 0, and JlJ2J3 

becomes irrelevant.) Because in Equations 7 to 9 we 
are using only the absolute values of the cosines of Qi, 
Q2, and 03, these equations apply to any of the four 
possible sets of  values of 01, 02, and 03. 

Dividing Equation 7 by 8 and using the sine rule, 

(sin a/sin~)2 = ( f l  _ 2 c l t  + 1)/(k 2 -  2 c 2 k  + 1) 

This gives 

t 2 - 2 c l t  + 1 - (sin a/sin/3)2(k2 - 2 c 2 k  + 1) = 0 

(11) 

t = Cl _+ {(sin a/sin/~)2(k2 - 2 c 2 k  + 1) - s2} 1/2 

(12) 

where 

Sl = sin QI (13) 



Also from Equat ion  11, 

t 2 = (sin a / s in /3 )2 (k2 -  2 c 2 k  + 1 ) -  1 + 2 q t  

(14) 

Dividing Equat ion  9 by Equat ion  8, 

(sin 7/sin fl)2 = ( k 2  _ 2c4k t 4- t2)/(k 2 _ 2c2k 4- 1) 

(15) 
Putting in for t 2 the expression in Equat ion  14 and 
rearranging, 

k 2 + [(sin2c~ - sin27)/sin2N(k2 - 2 c 2 k  + 1) - 1 

= 2(c4k - c i ) t  (16) 

Substituting for t its expression in Equat ion  12 and, 
after some manipulat ion,  

(sin c~ cos 7/sin/3)k 2 - [Cl c4 + c2 sin(e - 7)/sin/31k 

+ sin c~ cos 7/sin/3 - s~ 

= +_ (cgk  - cl)[(sin e/sin/3)2 

x ( k  2 - 2c2 k + 1) - s12] 1/2 (17) 

Squaring and collecting like powers of  k together,  we 
obtain 

b4 k4 4- b3 k3 4- b2 k2 + b l k  4-  b 0 = 0 (18) 

where 

b e = 

b 3 = 

b 2 

b 1 ~-- 

s in2 ~(cos 2 7 - c4:) 

2 sin e { C 4 ( C  1 4-  C2C4) sin 

- -  COS 7[Cl C 4 sin/3 + c2 sin (e - 7)]} 

2 sin 7 cos 7 (sin e cos 7 - s~ sin/3) 

+ [qc4 sin/3 4- c2 sin (~ - 7)] 2 

2 ~_ sin2/3 -- (C 2 + C 2 + 4CLC2C4) sin2~ + c4sl 

2{e1[(c4 + clc2)  sin2e -- c4s~ sin2/3] 

- -  [clc4 sin fl + c2 sin (c~ -- 7)] 

will indicate that  their corresponding apex angles are 
acute, and, if negative, indicate that  they are obtuse 
(see Equat ions  1 to 5). Referring to Equat ion  6,j2 = 1 
or - 1 according to whether  k is positive or negative; 
similarly, j~ = 1 or - 1 depending on the sign of  t. 
Knowingj~ and j2, the value ofj3 follows f rom the fact 
that  JtJ2J3 = 1 or - 1  according to whether  the 
product  of  the cosines of  Qj, ~2, and ~3 is positive or 
negative, respectively. Thus if ~3 is not  ~/2, it can be 
established whether  it is acute or obtuse. Hence,  for 
each solution for  k, the values of  k0, to, Q~, 02, and 03 
giving the or ientat ion of  the pyramid in Fig. 3 may  be 
found. F r o m  these the corresponding grain orien- 
tat ion may be deduced. With as many  as four sol- 
utions for k, there will be as many  as four  grain 
orientat ions for the three observed traces AB, BC, and 
CA in Fig. 3. 

Once specific values have been obtained for k0, to, 
Q~, and 03, the grain orientation,  as a unit vector  (v~, 
v2, %), may  be obtained as follows. Relative to a 
Cartesian coordinate  system O X Y Z  set up as in Fig. 3 
with 0 coinciding with B, and with 0Z  perpendicular  
to the plane ABC, the coordinates  of  the vertices A, B, 
and C of  the pyramid ABCP are, respectively, 
(c cos fl, c sin/3, 0), (0, 0, 0) and (a, 0, 0). The  coordi-  
nates of  the vertex P shall be taken to be (xp, yp, zp). 
The values of  a, c, and (Xp, yp, Zp) c a n  be put  in terms 
of  k0, to, Q~, and 03 as shown in the Appendix.  

The vectors for the direction AP, BP, and CP 
are respectively (Xp - c cos/3, yp - -  C sin /3, Zp), 
(xp, yp, zp), and (x v - a, yp, zv). By considering the 
cross product  BP x CP we obtain the unit vector for  
the direction of  the outward  normal  to the face BCP 
a s  

(0, - -  Zp,  y p )  
n I - ( 1 9 )  

+ 4 )  '/2 
In the same way, the unit vectors n 2 and n 3 for the 
outward normals  to the faces ACP and ABP, respec- 
tively, will be found to be 

n 2 ~- 
[zp sin/3, Zp(a/c  - cos fl), (a - Xp) sin/3 + yp(COS/3 - a/c)] 

{z2p[1 + (a /c)  2 - 2a  cos fl/c] + [(a - Xp) sin/3 + yp(COS/3 - a/c )]2}  1/2 
(20) 

x [sin e cos 7 - s~ sin/3]} 

b0 = (sin c~ cos y - s~ sin/3)2 

_ c2(sin2a _ s 2 sin2/3) 

This is a quart ic equat ion in k which can be solved 
analytically (refer to a suitable mathematical  text e.g. 
[10]). There could be up to four  real solutions. 

For  each solution for k, the corresponding value for 

( - Z p  sin/3, Zp cos/3, Xp sin/3 - yp cos/3) 
//3 z 

[z2p + (Xp sin /3 - yp cos /3)211/2 

(21) 

(v~, v2, v3) is parallel to 0Z, and therefore makes 
angles to nl ,  nz,  and n3 with cosines of, respectively, 

d~ = yp/(y2p 4- Z2p)l/2 (22) 

(a - Xp) sin/3 + yp(COS/3 - a /c )  

d2 = {z2E 1 + (a/c)2 _ 2a  cos/3/c] 4- [(a - xp) sin/3 + yp(cos 13 - a/c)]2} 1/2 
(23) 

t may  be found from Equat ion  16. k0 and to are just the 
absolute values of  k and t respectively. When  an apex 
angle is 7r/2, there is no ambiguity,  but  other  than this, 
it will not  be obvious whether  the apex angle has its 
acute or obtuse form. This can be ascertained by 
referring to the signs ofj~, J2, and J3, which if positive, 

d3 = Xp sin/3 - yp cos/3 ( 2 4 )  

{z~ 4- (Xp sin/3 - yp c o s  f l )2}1/2 

Let (n11, ni2, hi3),  (n21, n22, f/23), and (/%1, /'/32, /233) give 
the unit vectors nl, n~, and n 3 in the crystal axes 
system, i.e. 
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(/711, hi2, /713) = (hi ,  k l ,  l l ) /( h2 ~- k2 JF l~)1/2 

(25) 

(/721, n22, /723) = j ,2(h: ,  k2, 12)/(h~ + k 2 + l~) 1/2 

(26) (1) 
(2) 

(//31, //32, /733) ~ - -  J13(h3, k3, 13)1( h2 + k] + l~) '/2 (3) 
(27) (4) 

wherejl2 and j13 = _+ 1, the correct signs being those (5) 
satisfying (6) 

(/711, /712, nl3)(n21, n22, n23) 

(nil, n12, nj3)(n31, n32, n33) 

(//21, n22, /723)(//31, /132, n33) 

Then, 

: -  n 1 It  2 

= n l n  3 (28)  

n 2 n  3 

/'/11231 -~- /712V2 -~- /'/137.)3 

//212)1 Jr- /'/22'/32 -'~ /7232)3 ~ 

/'/312)1 "q- /7322)2 -~- /7332)3 = 

dl (29) 

a2 (30) 

a3 (3t) 

Solving Equations 29 to 31 for vl, v2, and v 3 we will 
obtain 

2) 1 = [ d l ( n 2 2 n 3 3  - /,/32/723) q- d 2 ( n 3 2 n 1 3 -  n12n33 ) 

+ d3(n,2n23 - n22n13)]/N (32) 

'7")2 = [dl(/731n23 - -  /721/733) 't- d ? ( n l l n 3 3 -  n31/713 ) 

4- d3(/721n13 - -  n l l n z 3 ) ] / N  (33)  

v3 = [d~(n21n32 -- n31n22) + d2(n31n12-  nlln32) 

+ d3(n~.n22 - n21njz)]/N (34) 

N = n l j (n22n33-  n23n32) + n12(n23n31- n21n33) 

+ n13(n21n32 - nz2n3j) (35) 

Equations 32 to 34 allow the grain orientation 
(v~, v2, v3) to be obtained from the observed values of 
the angles c~,/3, and 7 between the traces AB, BC and 
CA in Fig. 3, produced by planes ( h l k l l O ,  (h2k212), 
and (h3k313), respectively. Because of the quartic 
Equation 18 there may be as many as four solutions. 
The correct solution wil be the one which will provide 
for other observed trace directions. 

3. Application of the analysis to {1 1 2} 
traces 

The use of the equations and expressions developed 
above in determining a grain orientation is best illus- 
trated by obtaining a solution for a specific case, e.g. 
the ferrite grain in Fig. 1. There are on the grain 
surface six { 1 1 2} twin boundary directions at angles 
which were measured to be as in Table I. 

The first step in the orientation determination con- 
sists of selecting three trace directions, e.g. 1, 2, and 3 
in Fig. 1 or 2, and noting the angles ~,/~, ~ between 
them, when they are arranged to form a triangle ABC 
in the manner of Fig. 3. 

Next, all the possible planes (hi kl ll), (hzk212) ,  and 
(h3 k3/3), which could have produced these traces, are 
considered. For {1 1 2} traces, there are twelve possi- 
bilities, as shown in Table II. Other combinations of 
{ 1 1 2} planes will be found to be equivalent to one of 
these. The apex angles of the pyramid of the type in 
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T A B L E  I Directions of  traces in Fig. 1 

Trace direction Angle made with direction (1) 
measured counter-clockwise 
(degrees) 

0.0 
112.8 

84.3 
20.5 
21.1 
73.0 

Fig. 3 are next to be ascertained. They work out to be 
the values shown in Table II. 

For each combination of a { 1 1 2} triplet in Table II, 
we now have the basic data to compute, from 
Equations 1 to 34, the grain orientation of which, as 
we saw earlier, there may be as many as four possi- 
bilities (although it is usually found that there are 
two). The computation will have to be done for all the 
12 {1 1 2} combinations in Table II, producing many 
possible solutions which could have given rise to the 
three trace directions 1, 2, and 3. Further solutions 
arise because, for each combination in Table II, it is 
not known which particular planes should actually 
represent the trace directions 1, 2, and 3. One will have 
to consider all possibilities of assigning the directions 
AB, BC, and CA in Fig. 3 to these three trace direc- 
tions. This is tantamount to assigning the three { 1 1 2} 
planes to these trace directions in all possible ways, 
there being six ways of doing this. In some cases where 
a pair of apex angles are similar, or the supplement of 
the other, the number of ways reduces to three, e.g. 
combination 11 in Table II. In the case of combination 
12, where all the apex angles are equal, there is only 
one way of assigning the {1 1 2} planes to the trace 
directions 1, 2, and 3. Any other way would be equiv- 
alent. 

Such a vast number of computations is clearly not 
humanly possible, but is readily done with a computer. 
A program was written to perform such computations 
on the IBM 3081. The program, on execution, first 
accepts the data in Tables I and II. It next computes 
the values of e,/~, and V which are initially the angles 
between traces 2 and 3, 3 and 1, and 1 and 2, respec- 
tively. It then performs the solution of the quartic 
Equation 18, and obtains the corresponding grain- 
orientation possibilities. This is done for the various 
triplets of {1 1 2} in Table II and assignments of AB, 
BC, and CA to the trace directions 1, 2, and 3. The 
program also computes, for each orientation possi- 
bility, the directions of the other { 1 1 2} trace direc- 
tions, and compares them with the actually observed 
directions of other {1 1 2} traces, i.e. 4, 5, and 6 in 
Fig. 2. It identifies the solution whose computed 
{ 1 1 2} trace directions best match with these observed 
directions, and prints out this solution in the manner 
illustrated in Fig. 4. The printout shows the observed 
trace directions and the angles between traces 1, 2, and 
3, the correct orientation possibility (vl, v2, v3), the 
computed trace directions for this orientation, and the 
corresponding computed azimuthal elevations of the 
{1 1 2} planes. The apex angles for this orientation 
solution as well as which inter-trace angles served for 



T A B  L E 11 The 12 possible sets of { 1 1 2} triplets for the trace planes in Fig. 3 and the corresponding pyramid apex angles* 

(hi klll) (h2 k212) (h3 k3/3) ~01 (deg) Q2 (deg) Q3 (deg) 

1. (1 1 2) (I 2 1) (~ i 1) 48.506 020 29 121.482 154 11 151.439 174 78 
2. (1 1 2) (1 2 1) (i  1 2) 82.250 633 62 121.482 154 11 140.768 479 52 
3. (1 1 2) (1 2 1) (I T 2) 31.482 154 11 150.042979 32 162.976 133 82 
4. (1 1 2) (1 2 1) (i '5 1) 14.458 287 92 160.713 674 59 169.329 304 73 
5. (1 l 2) (2 T 1) (i  1 2) 146.255 386 67 151.439 174 78 39.231 52048 
6. (1 1 2) (~- T 1) (T 2 1) 107.023 866 18 122.878 349 56 72.976 133 82 
7. (1 1 2) (2 1 1) (~ I 1) 135.584 691 40 112.207 654 30 67.792 345 70 
8. (1 1 2) (2 i  1) (1 ~ 1) 101.53695903 101.53695903 78.46304097 
9. (1 1 2) (21 1) (2 T 1) 72.976 133 82 118.560 825 22 90.000 000 00 

! 0. (1 1 2) ([ 1 2) (i  12) 129.231 520 48 78.463 040 97 129.231 520 48 
l 1. (1 1 2) (I 2 1) (~ 1 1) 92.921 328 89 92.921 328 89 145.952 267 63 
12. (1 1 2) (1 2 1) (2 1 1) 117.035691 79 117.035691 79 117.035691 79 

*For each triplet, three further sets of apex angles may be obtained by replacing a pair of the apex angles by their supplementary angles. 

e,/3, and 7 are also shown. The information has been 
used to plot stereographically in Fig. 2 the {1 1 2} 
poles pertaining to the observed trace directions 1 to 
6. In this plot the {1 1 2} poles have been rotated 90 ° 
about  (v~, v2, %) so that they should lie on their 
respective trace directions. It is seen that the poles are 
on or very near their relevant trace directions. The 
slight deviations are probably due to limitations in the 
accuracy to which the trace directions can be measured. 

4. Concluding remarks 
On the IBM 3081 mainframe system, the total com- 
putation time for the above orientation determination 
took less than 1 sec. Thus, despite the complexity of  
the orientation determination, and the many alter- 
native solutions to consider, the computer  has ren- 
dered the process a feasible one. It is quite clear that 
traces of  other high-order planes or combinations of  
planes could be approached similarly, and the grain 
orientation obtained from them in the same way, 
where previously this was not possible for want of  an 

analysis which would allow for computerization of the 
process. 

A listing of the computer  program used above for 
obtaining grain orientations from { 1 1 2} traces will be 
made available on request. 

Appendix 
For  given values of  k0, to, 0~, and 03 the corresponding 
values of  a and c in Fig. 3 follow from the cosine rule: 

a = (tg + 1 - 2t0 c o s  01) 1/2 (A1) 

c = (k~ + to 2 - 2kotoCOS ~o3) 1/2 (A2) 

In Fig. 3, H is the vertical projection of  P on to the 
plane ABC. We see that 

2 2 2 (A3) Xp -~- yp = BH 2 = to 2 - zp 

( X p -  a) 2 +yZp = CH 2 = 1 - zZp (A4) 

( x p -  ccos/~)2 + ( y p _  csin/3)2 = AH 2 = ~ _  

(A5) 

(A) OBSERVED TRACE DIRECTIONS ARE IN DEGS: 

( I )  0 . 0  (2) 112.8 (3) 84 .3  
(4)  2 0 . 5  (5)  21 .1  (6)  7 3 . 0  

(B) ANGLES BETWEEN TRACES (1)  & ( 2 ) ,  (2)  & ( 3 ) ,  (3)  & (1)  

= 6 7 . 2  2 8 . 5  84.3  DEGS 

(C) CORRECT ORIENTATION POSSIBILITY: 

ALPHA, BETA, GAMMA = 6 7 . 2 0  8 4 . 3 0  28 .50  DEGS 

RHOt, RH02, RH03 = 14 .46  19 .29  10 .67  DEGS 

(V1 ,V2 ,V3 )  = ( 0 .2567  , - 0 . 9 6 0 8  , -0~1052)  

PLANE 
T R A C E  AZIMUTHAL 

DIRECTION ANGLE 
(DEGS) (BEGS) 

-1 - 2  I 0 . 0 0  5 0 . 4 5  
-1 - I  2 2 1 . 0 2  78 .37  
-1 2 1 21 .21  - 2 1 . 2 2  
-1 1 2 3 0 . 8 6  - 5 4 . 3 5  

1 ~1 2 7 0 . 1 9  6 5 . 7 2  
1 - 2  1 71 .87  3 2 . 1 9  
1 I 2 8 4 . 3 0  - 6 8 . 0 8  
2 - I  I 107.21 5 6 . 0 2  
I 2 1 112.80 - 4 3 . 7 3  
2 1 1 118.32 - 7 6 . 9 6  

- 2  - I  1 167.14 81 .97  
-2  I 1 168.31 - 4 9 . 8 6  

Figure 4 Computer printout showing the 
results of the application of the analysis of 
this paper to the ferrite grain in Fig. I. 
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From Equations A3 to A5 one will be able to obtain 

Xp = (a 2 + t~ - 1)/2a (A6) 

Yv = ( e2 + t~ - k~ - 2 c x  v cos ~ ) / 2 c  sin/~ (A7) 

zp = (t~ - x~ - -  y20)1/2 (A8) 

Equations A6 to A8 enable us to obtain Xp, Yo, and Zp 
from a given set o f  values o f  k 0, t 0, ~ ,  Q3. 
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